
Machine Learning for Caching Placement in Edge
Computing Networks

Liang Zhang, Member, IEEE, and Bijan Jabbari, Fellow, IEEE
Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030, USA

Abstract—Internet of Things devices (IoTDs) that deployed
for various applications have limited size, power, storage, and
computing capabilities, and many of them are used for low-latency
applications. Mobile edge computing (MEC) can be leveraged to
reduce the latency of IoTDs, and judicious caching placement
can help further to improve the quality of service. In this paper,
we study multi-content placement (MCP) in the MEC networks
for IoTDs by considering the background data caching in the
edge nodes and the data collection of IoTDs. The MCP problem
is formulated by considering the caching, the IoTD assignment,
and the communication and computing resources allocation to
minimize the average latency of all IoTDs. As the MCP problem
is NP-hard, we propose a deep reinforcement machine learning
algorithm to obtain the caching placement and IoTD assign-
ment jointly to solve the MCP problem. We use an optimal
joint resource-scheduling algorithm to assign the resources. Our
results demonstrate that considerable latency improvement can
be achieved through the proposed deep reinforcement machine
learning algorithm as compared to baseline algorithms.

Index Terms—Machine learning (ML), Internet of Things (IoT),
mobile edge computing, caching placement, latency.

I. INTRODUCTION

Billions of Internet of Things (IoTs) equipment is deployed
for various applications such as smart homes, smart transporta-
tion, autonomous driving, and augmented reality, and many
of them have been applied to low-latency applications [1].
Due to the limited size and weight, Internet of Things devices
(IoTDs) are equipped with limited resources and capabilities
such as battery, storage, and computing capacity. Meanwhile,
numerous IoT applications have low latency requirements,
which impose challenges in executing tasks of IoTDs [2].
Mobile edge computing (MEC) is an attractive solution that
can overcome the hurdle by providing computation offloading
and communication services to IoTDs through the deployment
of computing facilities at the edge of the wireless networks,
and then the latency and energy consumption of IoTDs can be
reduced by MEC [2]–[4].

To execute the task of an IoTD in an edge node, the IoTD
needs to transmit the collected data to the edge node and
the edge node also needs to cache the background data (the

Liang Zhang and Bijan Jabbari are with the Communications and Net-
works Laboratory, Department of Electrical and Computing Engineering,
George Mason University, Fairfax, VA 22030 USA (email: lzhang36@gmu.edu;
bjabbari@gmu.edu). This work was supported in part by National Science
Foundation under Grant NSF 2029221.

related database) for computing; the computing resources of
the edge node are assigned to this IoTD to provide computing
services; and the computing results are returned to the IoTD [5].
To make the IoTD task offloading efficiently, the edge nodes
need to cache the related database/relevant data; if the related
database/relevant data is not cached, it must be downloaded
from the cloud first, which will increase the total latency of
the service [5]. A good example is intelligent monitoring in the
smart grid: executing the computing tasks from IoTDs needs
not only sensed data (the appearance, the operating status, and
the abnormal conditions) but also the surrounding infrastructure
data (weather conditions, protection, etc.) [5]. Due to the
limited caching capacity, the related database/relevant data of
all IoTDs cannot be cached at edge nodes. Therefore, what
and where to cache the related database/relevant data need to
be carefully designed.

Some studies related to edge computing and cache placement
have been reported in the literature. Zhou et al. [5] studied the
joint computing offloading and caching in the edge computing
networks for smart-grid with the target to minimize the total
network cost. Bi et al. [3] minimized the energy consumption
of mobile users in a network with one server by considering
the joint caching placement, offloading, and resource allocation.
Chen et al. [6] investigated the problem of cache placement and
bandwidth assignment in a caching-enabled MEC network with
the objective to minimize the energy consumption of the edge
nodes and users. Chang et al. [7] leveraged the cooperation of
fog access points to optimize the transmission delay by the best
caching strategy. Gu et al. [8] designed a caching replacement
strategy by using the dynamic game model. Yang et al. [9]
minimized the average utility consumption via the cooperation
of the caching placement of adjacent edge nodes.

Edge caching enables edge offloading by executing the com-
puting tasks on edge servers instead of transmitting data to the
cloud and receiving the computing service from the cloud, thus
reducing the latency and energy consumption [5]; In addition, a
well-planned content placement can further improve the latency
and the quality of service. Although there are some existing
works related to MEC and caching, only a few works have
investigated the latency problem in MEC networks with multi-
content placement, especially with considering the background
data caching in the edge nodes and the data collection of IoTDs.

In this paper, we formulate the multi-content placement (MCP)
problem in edge-computing networks for IoTDs with the target
of minimizing the average latency of IoTDs.

The major contributions are summarized as follows: 1) We
study multi-content placement in the MEC network for IoTDs
while considering the background data caching in the edge
nodes and the data collection of IoTDs. We consider the
uplink data transmission from IoTD to edge nodes, the caching
status of the background data/related database, fetching the
background data/related database from the cloud, and executing
the offloading tasks of the IoTDs in edge nodes. 2) We
formulate the MCP problem by considering the caching, the
IoTD assignment, the computing resource, and the commu-
nication resource allocation. 3) We design an optimal joint
resource scheduling algorithm to assign the communication and
computing resources to IoTDs. 4) We propose a deep reinforce-
ment machine learning algorithm to solve the MCP problem
by determining the joint caching and IoTD assignment and
obtaining the resource allocation results from the optimal joint
resource scheduling algorithm. 5) We evaluate the performance
of the proposed machine learning algorithm with comparisons
to baseline algorithms.

II. SYSTEM MODEL

The multi-content caching scenario in the MEC network is
illustrated in Fig. 1, which includes IoTDs, edge nodes, and
the cloud. All edge nodes are equipped with computing and
communication facilities, which can cache any background
data/related database within their capacities to perform com-
puting tasks. To clarify, the content refers to the required
background data to provision the tasks of IoTDs and we may
interchangeably use background data/related database and con-
tent. Different types of applications require different required
background data, implying that various contents are used. Note
that an edge node cannot cache all contents due to the limited
storage capacity, and all of them are available in the cloud.

An IoTD can transmit data to an edge node and then receive
the communication and computing service in an edge node. If
the edge node has cached the corresponding content for this
IoTD, the computing service is executed on the edge node
directly; otherwise, the edge node needs to fetch the relevant
content from the cloud first and then serve the computing
tasks. Note that the communication resources are shared by
the IoTDs in the frequency multiplexing scheme. To make
communications more efficient, different IoTDs use different
frequency spectra for communications and different edge nodes
also utilize different frequency spectra for communications.

Denote B, U and K as the set of edge nodes, IoTDs,
and contents, respectively. Let Ai = {ci, ri, ei, yi} be the
computing task of IoTD i. Here, ci, ri, ei and yi represent
the computing requirements in terms of CPU cycles, the data
collected by IoTD i, the content type requirement, and the
required background data/relevant data for executing the com-
puting task (i ∈ B, j ∈ U , and ei ∈ K), respectively. Note

Cloud

D ECBA

Computing Facilities Content SetEdge Node IoTDs

C
B
A

D

E

C
E

B

AA

D

C
B

D ECBACloud

D ECBA

Computing Facilities Content SetEdge Node IoTDs

C
B
A

D

E

C
E

B

AA

D

C
B

D ECBA

Fig. 1: Multi-content caching in the edge computing network.

TABLE I: Important Notations and Variables

Symbol Definition
B the set of edge nodes.
U the set of IoTDs.
K the set of contents.
ci the computing requirement of IoTD i.
ri the data collected by IoTD i.
ei the content type requirement of IoTD i.
yi the required background data/relevant data for executing

the computing task ei of IoTD i.
PE the maximum transmission power of an edge node.
P I the maximum transmission power of an IoTD.
Cj the computing resource capacity of edge node j.
kmax the caching capacity in terms of type of contents.
di,j the data rate from IoTD i towards edge node j.
ξj the bandwidth capacity of edge node j.
β0 bandwidth of one resource block.
ti,j the total service delay.
t1i,j the total service delay if the content is cached.
t2i,j the total service delay if the content is not cached.
αk
j the indicator of the caching status of content k in edge

node j.
ωi,j the indicator of service status of IoTD i by edge node j
βi,j the assigned bandwidth to IoTD i by edge node j.
ζi,j the assigned computation resource to IoTD i by edge node

j.

that different IoTDs may have different content requirements.
For the same content requirements from different IoTDs, we
assume the requirements are the same. If one type of content
is cached in an edge node, then it can be used to serve many
IoTDs with the same content requirements. Important notations
are summarized in Table I.

We assume the popularity of the contents of IoTDs follows
the Zipf distribution, and the probability of requesting content
k by IoTD i is:

qki =
ξ−k∑K
1 ξ−k

, (1)

where ξ is the skewness parameter of the Zipf distribution; a

larger ξ means that more IoTDs are interested in high ranked
contents [8].

Let di,j and si,j be the data rate and the signal to interference
plus noise ratio (SINR) of IoTD i towards the edge node j.
Then, we have:

di,j = β0βi,j log2(1 + si,j), ∀i ∈ U , j ∈ B, (2)

where βi,j is the assigned frequency spectra to IoTD i and β0
is the bandwidth of one resource block.

si,j =
P Iψi,j

I0 + σ2
i,j

, ∀i ∈ U , j ∈ B. (3)

Here, P I is the transmission power of an IoTD; ψi,j is the
path loss between IoTD i and edge node j; σ2

i,j=β0βi,jN0 is
the thermal noise power; N0 is a constant that represents the
thermal noise power spectral density; we assume that efficient
interference management techniques are utilized to reduce the
interference and the power interference I0 is fixed [10].

Denote αk
j as the indicator of the caching status of content k

in edge node j; it is a binary variable and equals to 1 if content
k is cached by edge node j; otherwise, it is 0. Let ωi,j be the
service status indicator of IoTD i by edge node j; it is a binary
variable and equals to 1 if IoTD i is served by edge node j;
otherwise, it is 0. Assuming βi,j and ζi,j are the frequency
spectra and computing resource assignment to IoTD i by edge
node j.

We assume each IoTD can be served by no more than one
edge node. For the service process, IoTD i needs to transmit
the collected data ri to edge node j, and then IoTD i is served
by edge node j if the background data/related database yi is
cached (αk

j = 1); otherwise, the edge node needs to obtain yi
from the cloud and the additional delay tcloudi,j is introduced,
which is composed of the round-trip propagation delay, the
transmission delay, and the processing delay from the cloud.
Since the transmission speed from the cloud to the edge node is
high and the size of the background data/relevant data is small,
and then we assume tcloudi,j is fixed and tcloudi,j = tcloud. Here,
the requested content from the cloud is temporarily stored at
the edge node due to the limited caching capacity. In this paper,
we do not consider the IoTDs served by the cloud directly.

Let ti,j , t1i,j and t2i,j be the total service delay, the total
service delay when the content is cached (αk

j = 1), and the
total service delay when the required content/relevant data is
not cached (αk

j = 0) of IoTD i provisioned by edge node j,
respectively, as described below:

ti,j = αk
j t

1
i,j + (1− αk

j)t
2
i,j , ∀i ∈ U , (4)

t1i,j =
ri
di,j

+
ci
ζi,j

, ∀i ∈ U , (5)

t2i,j =
ri
di,j

+
ci
ζi,j

+ tcloudi,j , ∀i ∈ U , (6)

Here, ri/di,j is the transmission delay; ci/ζi,j is the computing
delay; ζi,j is the assigned computing resource in terms of CPU
cycles by edge node j.

III. PROBLEM FORMULATION

In this paper, we focus on minimizing the average latency of
IoTDs by jointly considering the caching placement, the IoTD
assignment, the computing resource, and the communication
resource assignment. The MCP problem is formulated as fol-
lows:

P0 : min
αk

j ,ωi,j ,βi,j ,ζi,j

1

|U |
∑
i

∑
j

ti,j

s.t. :

C1 :
∑
k

αk
j ≤ Γ, ∀j ∈ E ,

C2 :
∑
j

ωi,j ≤ 1, ∀i ∈ U ,

C3 :
∑
i

ωi,jβi,j ≤ fj , ∀j ∈ E ,

C4 :
∑
i

ωi,jζi,j ≤ Cj , ∀j ∈ E ,

C5 : αk
j ∈ {0, 1}, ∀j ∈ E , k ∈ K .

C6 : ωi,j ∈ {0, 1}, ∀i ∈ U , j ∈ E . (7)

Here, C1 and C5 are content placement constraints, which
ensure that the cached contents do not exceed the caching
capacity. C2 and C6 are IoTD serving constraints, implying
that each IoTD can be provisioned by one edge node at most.
C3 and C4 are frequency spectra and computing resource
capacity constraints to ensure that the used frequency spectra
and computing resource are below or equal to the maximum
available resource of each edge node.

IV. ANALYSIS

The MCP problem is NP-hard because it is a non-convex,
nonlinear, and mixed discrete optimization problem [11], [12].
Then, a machine learning algorithm is proposed to solve the
MCP problem. First, we focus on the resource assignment
based on the given caching placement and IoTD assignment.
Second, we employ a machine learning algorithm to obtain the
best result of the caching placement and the IoTD assignment,
and then the MCP problem is solved.

For a given αk
j and ωi,j , the MCP problem can be re-

formulated as follows:

P1 : min
βi,j ,ζi,j

1

|U |
∑
i

∑
j

ti,j

s.t. :

C1 :
∑
i

ωi,jβi,j ≤ fj , ∀j ∈ E ,

C2 :
∑
i

ωi,jζi,j ≤ Cj , ∀j ∈ E . (8)

Since each IoTD requires both communication and comput-
ing resources to obtain the service, we assume the computing
resource assigned to an IoTD is in proportion to the assigned
frequency spectra; the total computing resource is exhausted

Algorithm 1: Optimal Resource Assignment

Input : B, U , fj , Cj , αk
j and ωi,j ;

Output: βi,j and ζi,j ;
1 for j in B do
2 determine Uj = {ωi,j = 1};
3 initialize ti,j , ∆ti,j , β0 and ζ0;
4 set f1j = fj , C1

j = Cj , f2j = 0, and C2
j = 0;

5 calculate ttotali,j =
∑

i

∑
j ti,j ;

6 while f1j ≥ ∆b& C1
j ≥ ∆τ do

7 for i in Uj do
8 update ti,j by t

′

i,j if β0 and ζ0 are assigned
to this IoTD;

9 calculate the latency reduction
∆ti,j = ti,j − t

′

i,j ;

10 find (i′, j′) = argmax
i

∆ti,j ;

11 assign β0 and ζ0 to IoTD i′ by edge node j′;
12 βi′,j′ = βi′,j′ + β0 ;
13 ζi′,j′ = ζi′,j′ + ζ0 ;
14 update ttotali,j ;

15 update βi,j and ζi,j ;

when the total frequency spectra are used. Then, problem P1

is transformed into problem P2. Note that problem P2 is
similar to the knapsack problem, but the user assignment is pre-
determined and the resource granularity is also different, e.g.,
the granularity of the assignment of problem P2 can be set as
one resource unit. Then, we can obtain the optimal solution for
the resource assignment, and Algorithm 1 is proposed to solve
problem P2. This is because the same amount of computing
resource ζ0 and frequency spectrum β0 of edge node j′ are
assigned to IoTD i′ with the largest latency reduction in the
total latency of all IoTDs by Algorithm 1 for each assignment.
Here, (i′, j′) = argmax

i
∆ti,j .

P2 : min
βi,j ,ζi,j

1

|U |
∑
i

∑
j

ti,j

s.t. :

C1 :
∑
i

ωi,jβi,j ≤ fj , ∀j ∈ E . (9)

As machine learning can achieve efficient solutions for com-
plicated optimization problems [13], [14], a deep reinforcement
learning technique is leveraged to solve the MCP problem.
Deep reinforcement learning is a combination of deep learning
and reinforcement learning; the neural networks are employed
to learn the environment and generate actions based on the
input; all neural networks are fully connected; in each neural
network, there is a weight of each link between two neighbor
neurons, which is updated based on the reward, the learning
strategy and the environment [14], [15]. The input includes the

Algorithm 2: DDPG-MCP

Input : B, U and four neural networks;
Output: g(n), αk

j and ωi,j ;
1 for epoch m do
2 Initialize the actor network with the weight θϕ;
3 set the target actor network with the weight θϕ−;
4 Initialize the critic network with the weight θQ;
5 set the target critic network with the weight θQ−;
6 set the replay buffer η = 0 and initialize ηb;
7 s(n) = 0, a(n) = 0 and g(n) = 0;
8 for each training step n do
9 calculate state s(n+ 1);

10 add {s(n), a(n), g(n), s(n+ 1)} to replay
buffer;

11 η = η + 1;
12 if η ≥ ηb then
13 update the critic network θQ by Eq. (10);
14 update actor network θϕ by Eq. (11);
15 update target networks;

16 get a(n+ 1);
17 add noise: a(n+ 1) = a(n+ 1) + σ(n+ 1);
18 decode a(n+ 1) to obtain αk

j and ωi,j by
Algorithm 1;

19 calculate g(n+ 1);

20 find the largest reward g(n′);
21 obtain αk

j and ωi,j by (αk
j , ωi,j) = argmax

i,j,k
∪g(n);

22 return g(n), αk
j and ωi,j .

current state, the action, and the next state. The output is the
action, which is utilized to calculate the reward. To proceed
with our deep reinforcement learning algorithm, we need to
define the state, action, and reward as follows:

• State: s(n) = {XY (B), XY (U), ci, ei, ri}. Here, XY (·)
is the function to determine the locations (X-axis and
Y-axis) of IoTDs/edge nodes in the cartesian coordinate
system.

• Action: a(n) = {αi,j , ωi,j}. It represents the caching
status and the IoTD assignment.

• Reward: g(n) = − 1
|U |

∑
i

∑
j ti,j . Note that we need to

set the negative value of the average latency of IoTDs for
the reward because our machine learning agent can only
maximize the objective value.

The deep deterministic policy gradient algorithm is proposed
to solve the MCP problem (DDPG-MCP), as expressed in
Algorithm 2. Four neural networks are utilized in the deep
deterministic policy gradient algorithm:
1) actor network a(n) = ϕ(s(n)|θϕ),
2) target actor network a(n) = ϕ(s(n)|θϕ−),
3) critic network Q(s(n), a(n)|θQ),
4) target critic network Q(s(n), a(n)|θQ−).

The critic network is updated as follows:

L(θQ) =
1

Γ

Γ∑
γ=1

[g(γ)−Q(s(γ), a(γ)|θQ) + λA1]
2. (10)

The actor network is updated below:

▽θϕΩ(θϕ) =
1

Γ

Γ∑
γ=1

(A2 ▽aQ(s, a|θQ)
∣∣
s=s(γ),a=ϕ(s(γ))

).

(11)
The target networks is updated by θϕ− ← ςθϕ + (1 − ς)θϕ−
and θQ− ← ςθQ +(1− ς)θQ−. Here, A1 = Q(s(γ+1), a(γ+
1)|θQ−); A2 = ▽θϕ ϕ(s|θϕ)

∣∣
s=s(γ)

; g(γ) stands for the reward
of the sample γ and Γ represents the number of samples in a
batch, 1 ≤ γ ≤ Γ; ▽θΩ(θ) is the gradient function and Ω(θ)
is used to obtain the policy target [13].

V. PERFORMANCE EVALUATION

We use Python 3.8 and Tensorflow 2.6.2
(tf.keras.optimizers.Adam) to run our simulations. The
service area is set as 500m× 500m and four edge nodes are
placed in the fixed locations to serve IoTDs, as expressed in
Fig. 2. There are 25 contents with different types, and the
skewness factor is set as 0.4 in the simulations. For the IoTD
distribution, a Matérn cluster process is leveraged to generate
the IoTDs. For the machine learning simulation settings, four
neural networks are initialized with identical parameters and
all of them have the same neural network configurations; each
neural network includes five layers: one input layer, three
hidden layers, and one output layer; each hidden layer has
800 neurons [13], [16]. Important simulation parameters are
summarized in Table II.

0 100 200 300 400 500
0

100

200

300

400

500

IoTD Locations
Edge Nodes

Fig. 2: Locations of edge modes and IoTDs.

To evaluate the performance of the proposed machine learn-
ing algorithm, three baseline algorithms are presented below:
(1) Fixed-Best-MCP: For the content placement, only the kmax

contents with the highest popularity are cached in edge nodes;
for the IoTD assignment, the edge node with the highest SINR

TABLE II: Simulation Parameters

Parameters value
the coverage area 500 m × 500 m
|B| 2
|U| {10, 15, · · · , 35}
|K| 25
ri, the input data size [1, 2] Mb
ci, the computing requirement [1, 20]× 107 CPU cycle
Cj , edge node computing capacity 2× 1010 CPU cycle/s
ψi,j 131.1 + 42.8log10(di,j),

di,j in km
Rayleigh fading 8 dB
N0 −174 dBm/Hz
P I 20 dBm
fj 50 RB (10 MHz)
β0 180 kHz
tcloud 100 ms

Machine Learning Parameters
of neurons of each hidden layer 800, 800, 800
learning rate of the actor networks 5× 10−5

learning rate of the actor networks 5× 10−5

learning rate of the critic networks 5× 10−4

λ, discount factor 0.99
ς , soft target update 0.001
number of training epochs 6
number of training steps 800

ηb, number of samples in a batch 64
replay buffer capacity 105

10 15 20 25 30 35
Number of IoTDs

0

100

200

300

400

500

600

700

800

Av
er

ag
e

La
te

nc
y

of
 Io

TD
s (

m
s)

DDPG-MCP
Fixed-Best-MCP
Fixed-Fair-MCP
Random-Fair-MCP

Fig. 3: Average latency of served IoTDs versus # of TDs.

is chosen to serve every IoTD; and the resources are assigned
by Algorithm 1. (2) Fixed-Fair-MCP: The content placement
and the user assignment are the same as the Fixed-Best-MCP
algorithm; the communication and computing resources are
equally shared by IoTDs. (3) Random-Fair-MCP: The contents
cached in edge nodes are randomly chosen from all contents;
all IoTDs equally share both computing and communication
resources to achieve the best fairness.

Fig. 3 shows the average latency results versus the number of
IoTDs, and the caching capacity kmax is set as 10 for each edge

15 (5) 15 (10) 30 (5) 30 (10)
Number of IoTDs (Caching Capacity)

0

100

200

300

400

500

Av
er

ag
e

La
te

nc
y

of
 Io

TD
s (

m
s)

DDPG-MCP
Fixed-Best-MCP
Fixed-Fair-MCP
Random-Fair-MCP

Fig. 4: Average latency of IoTDs versus caching capacity.

node. The average latency of all IoTDs increases as the number
of IoTDs increases. This is because the computing resource and
frequency spectra assigned to each IoTD decrease when the
number of IoTD increases, which leads to high average latency.
The DDPG-MCP algorithm can reduce the average latency up
to 34.7%, 41.2%, and 42.1% as compared to the Fixed-Best-
MCP, the Fixed-Fair-MCP, and the Random-Fair-MCP algo-
rithms, respectively. The Random-Fair-MCP algorithm has the
worst performance because the cached contents are randomly
selected, which leads to many requests for downloading the
background data/related database from the cloud to the edge
nodes. The Fixed-Best-MCP algorithm has better performance
than the Fixed-Fair-MCP algorithm because a better resource
assignment mechanism (Algorithm 1) is used. The average
latency of the DDPG-MCP algorithm is better than the Fixed-
Best-MCP algorithm because of the better IoTD assignment
and the better selection of the cached content.

Fig. 4 shows the average latency results versus different
caching capacities with 15 and 30 IoTDs. The number in
parenthesis stands for kmax, e.g., 15(5) represents 15 IoTDs
and kmax = 5. The average latency of all algorithms increases
when there are more IoTDs (30 IoTDs). The average latency
of the Random-Fair-MCP algorithm does not have many differ-
ences because the cached contents in edge nodes are randomly
selected, which do not well match the content requirements
of IoTDs. The average latency of the DDPG-MCP, the Fixed-
Best-MCP, and the Fixed-Fair-MCP algorithms decreases up
to 8.1% as the caching capacity increases. This is because a
higher number of IoTDs are served by edge nodes without the
transmission from the cloud when edge nodes cached more
contents. The DDPG-MCP algorithm has the best performance
than the rest algorithms because it can obtain the best IoTD
assignment and content placement based on the workload.

VI. CONCLUSION

In this work, we have studied caching in MEC networks by
considering background data caching and the data collection
of IoTDs. We have formulated the multi-content placement
(MCP) problem in the MEC networks to minimize the average
latency of IoTDs. Since the MCP problem is NP-hard, a deep
reinforcement learning algorithm, referred to as DDPG-MCP,
is proposed to solve the MCP problem by achieving the best
joint caching placement and IoTD assignment and obtaining
the resource allocation through the optimal resource scheduling
algorithm. The proposed machine learning algorithm and the
three baseline algorithms for the MCP problem have been
evaluated via extensive simulations in Python. The simulation
results have demonstrated that the DDPG-MCP algorithm is
superior to the baseline algorithms by up to 42% improvement
for the average latency compared to baseline algorithms.

REFERENCES

[1] C. Qiu et al., “Networking integrated cloud–edge–end in IoT: A
blockchain–assisted collective Q-learning approach,” IEEE Internet
Things J., vol. 8, no. 16, pp. 12 694–12 704, Aug. 2021.

[2] P. Wang et al., “Joint task assignment, transmission, and computing
resource allocation in multilayer mobile edge computing systems,” IEEE
Internet Things J., vol. 6, no. 2, pp. 2872–2884, Apr. 2019.

[3] S. Bi, L. Huang, and Y.-J. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge computing
systems,” IEEE Trans. Wireless Commun., vol. 19, no. 7, pp. 4947–4963,
2020.

[4] X. Sun and N. Ansari, “Latency aware workload offloading in the cloudlet
network,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1481–1484, Jul. 2017.

[5] H. Zhou, Z. Zhang, D. Li, and Z. Su, “Joint optimization of computing
offloading and service caching in edge computing-based smart grid,”
IEEE Trans. Cloud Comput., pp. 1–1, 2022.

[6] J. Chen, H. Xing, X. Lin, and S. Bi, “Joint cache placement and
bandwidth allocation for FDMA-based mobile edge computing systems,”
in Proc. of IEEE ICC, 2020, pp. 1–7.

[7] Q. Chang, Y. Jiang, F.-C. Zheng, M. Bennis, and X. You, “Cooperative
edge caching via multi agent reinforcement learning in fog radio access
networks,” in Proc. of IEEE ICC, 2022, pp. 3641–3646.

[8] H. Gu, W. Cai, L. Zhao, W. Luo, G. Zhou, Q. Chen, H. Tu, Z. Wang, and
S. Li, “Dynamic game-based caching replacement in edge networks,” in
IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), 2022,
pp. 1–5.

[9] S. Yang, S. Fan, G. Deng, and H. Tian, “Local content cloud based
cooperative caching placement for edge caching,” in Proc. of IEEE
PIMRC, 2019, pp. 1–6.

[10] J. Liu, B. Bai, J. Zhang, and K. B. Letaief, “Cache placement in Fog-
RANs: From centralized to distributed algorithms,” IEEE Trans. Wireless
Commun., vol. 16, no. 11, pp. 7039–7051, 2017.

[11] R. M. Nauss, “Solving the generalized assignment problem: An optimiz-
ing and heuristic approach,” INFORMS Journal on Computing, vol. 15,
no. 3, pp. 249–266, 2003.

[12] L. Zhang and N. Ansari, “Latency-aware IoT service provisioning in
UAV-aided mobile-edge computing networks,” IEEE Internet Things J.,
vol. 7, no. 10, pp. 10 573–10 580, Jun. 2020.

[13] L. Wang et al., “Deep reinforcement learning based dynamic trajectory
control for UAV-assisted mobile edge computing,” IEEE Trans. Mobile
Comput., vol. 21, no. 10, pp. 3536–3550, Oct. 2022.

[14] L. Zhang, B. Jabbari, and N. Ansari, “Deep reinforcement learning driven
uav-assisted edge computing,” IEEE Internet Things J., pp. 1–1, 2022.

[15] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, Sept. 2015.

[16] L. Zhang and B. Jabbari, “Machine learning driven latency optimization
for application-aware edge computing-based IoTs,” in Proc. of IEEE ICC,
2022, pp. 183–188.

